Abstract
AbstractThe effects of Fe2O3 on phase evolution, density, microstructural development, and mechanical properties of mullite ceramics from kaolin and alumina were systematically studied. X‐ray diffraction results suggested that the ceramics consisted of mullite, sillimanite, and corundum, in the sintering range of 1450°C–1580°C. However, as the sintering was raised to 1580°C, mullite is the main phase with a content of 94%, and the corundum phase content is 5.9%. Simultaneously, high‐temperature sintering had a positive effect on the densification of the mullite ceramics, where both the bulk density and flexural strength could be optimized by adjusting the content of Fe2O3. It was found that 6 wt% Fe2O3 was optimal for the formation of rod‐shaped mullite after sintering at 1550°C for 3 h. The sample's maximum bulk density was 2.84 g/cm3, with a flexural strength of 112 MPa. Meanwhile, rod‐shaped mullite grains with an aspect ratio of ~9 were formed. As a result, a dense network structure was developed, thus leading to mullite ceramics with excellent mechanical properties. The effect of Fe2O3 on the properties might be attributed to the fact that Al3+ ions in the [AlO6] octahedron were replaced by Fe3+ ions, resulting in lattice distortion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Ceramic Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.