Abstract

A design of experiments (DoE) approach was employed to systematically characterize the effects of both oxygen concentration and cooling rate on the amorphous and crystalline phase fractions in the Zr48Cu46.5Al4Nb1.5 bulk metallic glass composite (BMGC) alloy. Specifically, four distinct oxygen concentrations and five distinct cooling rates were used. Phase quantification was achieved using Rietveld refinement of synchrotron X-ray diffraction (XRD) data. Electron probe microanalysis (EPMA) using wavelength dispersive spectroscopy (WDS) revealed that the big-cube crystalline phase may scavenge oxygen from the amorphous matrix of a 2864 ± 47 wppm oxygen sample. Transmission electron microscopy (TEM) of the alloy containing 340 ± 25 wppm oxygen revealed the presence of an amorphous matrix with partially-transformed colonies of B2 (Pm-3m) where the transformation product was a B19’ superstructure (Cm space group) instead of the more common B19’ superstructure (P21/m space group); this was in agreement with the Rietveld refinement results. An orientation relationship between the B2 and B19’ phases was observed as expected. Finally, it was possible to produce thicker sections (5 mm vs. 3.5 mm) with the desired composite structure (∼80% amorphous fraction with ∼20% B2/B19’) compared with previous BMGC studies on similar compositions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.