Abstract

Aluminum-manganese alloys with compositions ranging from 0 to 50 wt pct Mn were electrodeposited onto copper substrates from a chloroaluminate molten salt electrolyte containing MnCl2 at temperatures of 150 °C to 325 °C. The structures of these electrodeposits were then compared to those observed when metastable electrodeposits were thermally annealed at 200 °C to 610 °C. The alloys were characterized by scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy, and X-ray diffraction. At deposition temperatures of 150 °C to 250 °C, no stable structure other than the strongly supersaturated and highly dislocated Al-face-centered cubic (fcc) solid solution is observed. An amorphous phase and body-centered cubic (bcc) Al8Mn5 are observed at higher manganese compositions. In the temperature range of 250 °C to 325 °C, some of the phases predicted by the equilibrium phase diagram, such as Al6Mn and Al11Mn4, are electrodeposited. The direct deposition of the icosahedral and decagonal phases has been demonstrated at 325 °C. Thermal annealing of the amorphous phase at temperatures higher than 225 °C results in its transformation to the icosahedral phase with a grain size much smaller than that obtained in the electrodeposited icosahedral phase. Additional annealing at higher temperatures does not result in any detectable coarsening of the icosahedral phase; instead, crystals of Al6Mn or Al11Mn4 grow into the regions once occupied by the icosahedral phase. The crystalline Al6Mn phase which forms as the result of thermal annealing shows a structural deviation from the equilibrium phase. As-deposited alloys comprised of 2-to 3-nm-thick amorphous regions separated by fcc-Al grains failed to crystallize after 30 minutes annealing at 500 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call