Abstract

The investigations in the polycomponent high alkaline systems – TiO2–H2SO4–Na2SiO3–NaOH–H2O and TiO2–H2SO4–(NH4)2SO4–Na2SiO3–NaOH–H2O under hydrothermal synthesis conditions have been carried out to provide new products with the given technical properties. It has been shown that by directed selection of structure-forming components, in particular titanium compounds, together with optimal parameters of hydrothermal treatment of the obtained precursor, it is possible to form compounds with the given phase and chemical composition, morphology and particle size. It was found that the rate of structural transformations during synthesis depends on the phase composition of titanosilicate precursors. During their hydrothermal treatment, alkaline and thermal hydrolysis with subsequent dehydration of hydrolyzed phases of titanium (IV) and silicon take place. The process is accompanied by localization of free bonds providing formation of Ti–O–Si–O-bridges and their subsequent transformation into structured new formations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call