Abstract

In this work, the effect of nano-sized SnO2 addition on the phase formation and electrical transport properties of (Tl0.85Cr0.15)Sr2CaCu2O7-δ (Tl-1212) superconductor was investigated. Thallium-based high temperature superconductor (HTS) with nominal starting composition (Tl0.85Cr0.15) Sr2CaCu2O7-δ was prepared using high purity oxide powders via solid state reaction method. Nano-sized SnO2 with 0.01 – 0.05 wt.% were added into Tl-1212 superconductors. The characteristic of the samples were determined by powder X-ray diffraction method (XRD), scanning electron microscopy (SEM), energy dispersive X-Ray analysis (EDX), electrical resistance measurements and transport critical current density measurements. Nano-sized SnO2 added (Tl0.85Cr0.15)Sr2CaCu2O7-δ showed Tc-zero between 93 and 95 K. All of the samples indicated a dominant phase of Tl-1212 with a minor phase of Tl-1201. The highest Jc (at 77 K) was shown by sample with 0.03 wt.% at 3260 mA/cm2. SnO2 has significantly enhanced the transport critical current density of Tl-1212 superconductor by acting as flux pinning centers. However, further addition of nano-sized SnO2 in Tl-1212 superconductor caused degradation in Jc. The SEM micrographs with energy dispersive X-Ray analysis (EDX) showed that SnO2 were well distributed in all the samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call