Abstract

Numerical experiments are carried out to study the phase fluctuations of a focused low-frequency sound field on an oceanic shelf. The focusing of sound at a distance of several kilometers is simulated using the phase conjugation of sound waves. Perturbations of the medium are represented by high-frequency (>1 cph) background internal waves and by the wind waves on the ocean surface. It is shown that, for a focused sound field at frequencies of several hundreds of hertz, the phase fluctuations do not exceed π and can be measured against the background of acoustic noise typical of shallow-water regions of the ocean. The fluctuation magnitude can be reduced approximately by half through the optimal choice of the mode composition. In the presence of such fluctuations, it is possible to measure the relative variations of the length of a stationary acoustic path with an accuracy of 1 m or better at a wind speed no greater than 10 m/s and a typical intensity of background internal waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.