Abstract

We analyze the attitude dynamics of an axially symmetric gyrostat under no external forces and one constant internal spin. We introduce coordinates to represent the orbits of constant angular momentum as a flow on a sphere. With these coordinates, we realize that the problem belongs to a general class of Hamiltonian systems, namely the problem here considered is the one parameter Hamiltonian that is a polynomial of at most degree two in a base of the Lie algebra so (3). The parametric bifurcations are found for both cases, when the rotor is spinning about the axis of symmetry of the gyrostat, and when it is spinning about another axis of inertia. The general solution for the global general flow is expressed in terms of the Jacobian elliptic functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.