Abstract
Phase mixing is a general mechanism of collisionless damping in magnetized plasmas. In a MHD model, the carrier of phase mixing is the Alfvén wave continuum, which is driven by the plasma inhomogeneity. In this work, we study the non-resonant conversion of a surface MHD eigenmode to the Alfvén continuum. It is shown that the finite-time-singularity of the phase of the surface mode can smear its periodic oscillation and induces the excitation of the local Alfvén waves. This type of mode conversion would enhance the collisionless dissipation of the surface eigenmode, i.e., accelerating its dissolution to the Alfvén continuum. The non-resonant mode conversion and damping mechanism explored here have potential applications to understand the physics of collisionless dissipation of various eigenmodes in magnetized plasmas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.