Abstract

For the purpose of investigating the microstructural evolution and the mechanical response under applied loads, a new phase field model based on the Ginzburg-Landau theory is developed by designing a free energy function with six potential wells that represent six martensite variants. Two-dimensional phase field simulations show that, in the process of a shape memory effect induced by temperature-stress, the reduction-disappearance of cubic austenite phase and nucleation-growth of monoclinic martensite multi-variants result in a poly-twined martensitic microstructure. The microstructure of martensitic de-twinning consists of different martensite multi-variants in the tension and compression, which reveals the microstructural asymmetry of nickel-titanium (NiTi) alloy in the tension and compression. Furthermore, in the process of super-elasticity induced by tensile or compressive stress, all martensite variants nucleate and expand as the applied stress gradually increases from zero. Whereas, when the applied stress reaches critical stress, only the martensite variants of applied stress-accommodating continue to expand and others fade gradually. Moreover, the twinned martensite microstructures formed in the tension and compression contain different martensite multi-variants. The study of the microstructural dynamic evolution in the phase transformation can provide a significant reference in improving properties of shape memory alloys that researchers have been exploring in recent years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.