Abstract

In this article, we aim to study the problem of the growth of intermetallic phases in solder joints undergoing mechanical deformation, using a phase-field model for multi-phase systems that can treat diffusion, elastic and plastic deformation. A suitable model is formulated and applied to Sn–Cu/Cu lead-free solder joints. The growth of the intermetallic layers during solid-state annealing is simulated for different strain states. We assess the values of stiffness tensors available in literature and perform ab initio calculations to support the selection of reasonable values from literature. We also perform a parametric study with different eigenstrain values and applied strains. We find that there is a significant effect of the considered eigenstrains and applied strains on the growth kinetics of the system and parabolic growth kinetics is followed in cases where the intermetallic layers grow. We thereby establish the importance of strain in the growth of intermetallic layers and the need for more targeted experiments on the role of strain in the reliability of the solder joint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.