Abstract

Summary Two-dimensional phase field simulationsof stress-free ferroelectric nanoparticles with different long-range (LR) electrostatic interactions are conducted based on the time-dependent Ginzburg-Landau equation. Polarization patterns and the toroidal moment of polarization are found to be dependent on the LR electrostatic interaction and the size of the simulated nanoparticle. Phase field simulations exhibit vortex patterns with purely toroidal moments of polarization and negligible macroscopic polarization in the stress-free ferroelectric nanoparticles when the LR electrostatic interaction is fully taken into account. However, a single-domain structurewithoutany toroidalmoment ofpolarizationis formed in small particlesif the LR electrostatic interaction is completed ignored. The result indicates that the LR electrostatic interaction and the particle size play crucial roles in the formation of polarization vortices in the ferroelectric nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.