Abstract

We present phase field simulations incorporating contributions due to chemical free energy, anisotropic interfacial energy, and elastic energy due to transformation strain, to demonstrate the nucleation and growth of multiple variants of alpha from undercooled beta in Ti-6Al-4V under isothermal conditions. A new composite nucleation seeding approach is used within the phase field simulations to demonstrate that the presence of a pre-existing strain field can cause the nucleation of specific crystallographic variants of alpha based on minimization of local elastic strain energy. Under conditions where specific combinations of elastic strains exist, for example in the vicinity of one or more pre-existing alpha variants, the nucleation of a new alpha variant is followed by the successive nucleation of the same variant in the form of a lamellar colony by an autocatalytic mechanism. At a given thermodynamic undercooling, the colony structure was favored at a nucleation rate that was low enough to allow sufficient growth of previously nucleated variants before another nucleus formed in their vicinity. Basket weave morphology was formed at higher nucleation rates where multiple nuclei variants grew almost simultaneously under evolving strain fields of several adjacent nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.