Abstract
Retardation effect of dispersed inert particles on delta–gamma interface migration in carbon steels during isothermal delta to gamma transformation is analyzed by two-dimensional phase-field simulations. The effect is systematically investigated for different values of particle radius, r, particle spacing, l, and initial carbon concentration of delta phase. The retardation effect becomes stronger when the pinning parameter described by r/l 2 is larger and the carbon concentration of delta phase is higher, indicating that delta to gamma transformation kinetics can be retarded in a similar way to the pinning effect on grain growth kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.