Abstract

We introduce a class of models based on near crack tip degradation of materials that can account for fracture growth under cyclic loads below the Griffith threshold. We incorporate the gradual degradation due to a cyclic load through a flow equation that decreases spatially varying parameters controlling the fracture toughness in the vicinity of the crack tip, with the phase and displacement fields relaxed to an energy minimum at each time step. Though our approach is phenomenological, it naturally reproduces the Paris law with high exponents that are characteristic of brittle fatigue crack growth. We show that the exponent decreases when the phase field dynamics is of the Ginzburg-Landau type with a relaxation time comparable to the cyclic loading period, or when degradation occurs on a scale larger than the process zone. In addition to reproducing the Paris law, our approach can be used to model the growth of multiple cracks in arbitrarily complex geometries under varied loading conditions as illustrated by a few numerical examples in two and three dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.