Abstract
ABSTRACTNumerical investigation on dynamic recrystallization in friction stir welds is of great significance to control the microstructure evolution and grains size in joints. The recrystallization and grain growth in the nugget centre of friction stir welded 6061 aluminium alloy are numerically simulated by combining the multiphase-field model with Kocks–Mecking dislocation model and employing the calculated temperature and strain rate variations with time in FSW process. The reliability of the model is verified by electron backscattered diffraction measurement results of grains size distribution at the same position. The specific reasons for different grain sizes under different levels of welding speed are quantitatively analysed. The ratios of recrystallization duration to deformation period and incubation period to deformation time are determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.