Abstract

There is renewed interest in the investigation of austenite formation due to the development and increased use of advanced high strength steels for automotive applications. Intercritical annealing is an essential processing step for cold rolled and coated steel products with multi-phase microstructures. During intercritical annealing the initial ferrite-pearlite microstructure transforms partially to austenite. Models for the austenite formation are critical to predict the austenite fraction as a function of the thermal cycle thereby facilitating the design and control of robust processing paths. Modelling the austenite formation is challenging because of the morphological complexity of this transformation. Phase field models are a powerful tool to describe the evolution of microstructures with complex morphologies, e.g. formation of finger-type features during austenite formation. The present paper gives an overview of model approaches for the austenite formation. Phase field simulations are presented for two scenarios: (i) austenite formation from a fully pearlitic structure with a lamellar arrangement of carbide aggregates and (ii) austenite formation from ferrite-pearlite microstructures. Simulation results are compared with experimental observations for pearlitic steels. The challenges are delineated for the development of austenite formation models with predictive capabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.