Abstract
In a powder bed fusion additive manufacturing process, the balling effect has a significant impact on the surface quality of the printing parts. Surface wetting helps the bonding between powder and substrate and the inter-particle fusion, whereas the balling effect forms large spheroidal beads around the laser beam and causes voids, discontinuities, and poor surface roughness during the printing process. To better understand the transient dynamics, a theoretical model with a simplified 2D configuration is developed to investigate the underlying fluid flow and heat transfer, phase transition, and interfacial instability along with the laser heating. We demonstrate that the degree of wetting and fast solidification counter-balance the balling effect, and the Rayleigh–Plateau flow instability plays an important role for cases with relatively low substrate wettability and high scanning rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.