Abstract

A multi-phase-field model for the description of the discontinuous precipitation reaction is formulated which takes into account surface diffusion along grain boundaries and interfaces as well as volume diffusion. Simulations reveal that the structure and steady-state growth velocity of spatially periodic precipitation fronts depend strongly on the relative magnitudes of the diffusion coefficients. Steady-state solutions always exist for a range of interlamellar spacings that is limited by a fold singularity for low spacings, and by the onset of tip-splitting or oscillatory instabilities for large spacings. A detailed analysis of the simulation data reveals that the hypothesis of local equilibrium at interfaces, used in previous theories, is not valid for the typical conditions of discontinuous precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.