Abstract

We consider a phase field model that includes a stress field during nonisothermal phase transformation of a single-component system. The model is applied to the solidification and melting of confined spherical volumes, where sharp interface solutions can be obtained and compared with the results of the phase field simulations. Numerical solutions to the phase field model for a spherically symmetric geometry have been obtained, with particular emphasis on the computation of surface energy, surface stress, and surface strain. The analysis of the equilibrium states for the phase field model allows us to obtain the value of the surface energy in the presence of stress, which can then be compared to the analogous calculation of the energy of a planar liquid-solid interface. It is also demonstrated that modeling the liquid as a solid with zero shear modulus is realistic by comparing the long-range stress fields in phase field calculations with those calculated using sharp interface models of either a coherent or a relaxed liquid-solid interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.