Abstract

The effects of second-phase particles on the recrystallization kinetics in two-dimensional polycrystalline structures were investigated. Numerical simulations of recrystallization were performed by coupling the unified subgrain growth theory with a phase-field methodology. Simple assumptions based on experimental observations were utilized for preparing initial microstructures. The following results were obtained: (1) The presence of second-phase particles retarded recrystallization speeds. (2) If the mean subgrain size was small enough recrystallized region covered whole system for various values of the particle fraction, f. (3) On the other hand, if the mean subgrain size was not small enough the progress of recrystallization was frozen at some point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.