Abstract

This work presents simulation of microstructure evolution in the nugget zone (NZ) of a AZ31-Mg-alloy friction stir weld. The process parameters (tool geometrical characteristics, rotational speed, travel speed, applied load) have been correlated with the resulting microstructural features in the NZ of the weld (grain size and population) with the aid of the MICRESS software, which provides the ability to simulate both nucleation and grain growth during dynamic recrystallization phenomena evolving in the NZ during the weld thermal cycle. The input parameters of the developed model include the tool geometry, the welding conditions as well as the recrystallization energy, the grain boundary mobility and specific material properties. NZ microstructure obtained by simulation shows good agreement with experimental measurements for both grain population and size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.