Abstract

Phase-field models based on multiple order parameters are used extensively to study grain growth in polycrystalline materials. However, if simulations are to be carried out using experimentally obtained microstructures as the initial condition, and the resultant microstructures are to be carefully compared with those obtained from experiments, then the parameters used in the numerical simulations need to be benchmarked with analytical solutions. Furthermore, the models themselves need to be modified to incorporate the dependence of grain boundary energy on misorientation across the boundary as well as the anisotropy in the boundary energy for any given misorientation that stems from the planes of different grains that make up the boundary. In this article, we address both these issues and present some preliminary results from our 2D and 3D simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.