Abstract

AbstractThis work outlines a rigorous framework for the ductile failure of frictional materials in elastic‐plastic soil mechanics undergoing large strains. Describing soil crack formation can be achieved in a convenient way by recently developed continuum phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities [1]. This avoids the use of complex discretization methods for crack discontinuities, and can account for complex crack patterns. For frictional materials, a non–associative Drucker–Prager‐type elastic‐plastic constitutive model suitable for a wide range of applications in soil mechanics is developed. It is linked to a failure criterion in terms of the elastic‐plastic work density that drives the fracture phase field. We demonstrate the modeling capabilities and algorithmic performance of the proposed formulation by a representative numerical example that describes soil crack formation using elastic‐plastic fracture mechanics. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.