Abstract
We present phase field simulations to estimate the conversion rate of CH(4) hydrate to CO(2) hydrate in the presence of liquid CO(2) under conditions typical for underwater gas hydrate reservoirs. In the computations, all model parameters are evaluated from physical properties taken from experiment or molecular dynamics simulations. It has been found that hydrate conversion is a diffusion controlled process, as after a short transient, the displacement of the conversion front scales with t(1/2). Assuming a diffusion coefficient of D(s) = 1.1 x 10(-11) m(2) s(-1) in the hydrate phase, the predicted time dependent conversion rate is in reasonable agreement with results from magnetic resonance imaging experiments. This value of the diffusion coefficient is higher than expected for the bulk hydrate phase, probably due to liquid inclusions remaining in the porous sample used in the experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Phys. Chem. Chem. Phys.
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.