Abstract
A 2D elastoplastic phase-field model is developed to study the effect of prior austenite grain size on martensitic microstructure evolution in stainless steel. The effects of strain hardening and strengthening by grain size reduction (Hall-Petch effect) have been included in the model. The results show that martensite units form in different packets oriented in different crystallographic directions in simulated coarse grains, whereas uni-directional martensitic growth is observed in simulated fine grains. The number of packets and martensite block width increase with increasing grain size. With a decreasing grain size the martensitic transformation start temperature decreases, indicating strengthening of austenite. Once the transformation is initiated, at a given time, simulated fine grains give rise to higher volume fraction of martensite compared to simulated coarse grains. The von Mises equivalent stress and plastic strain are large in simulated fine grains compared to those in simulated coarse grains. The simulation results are in good agreement with experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.