Abstract

Charge carrier doping usually reduces the resistance of a semiconductor or insulator, but was recently found to dramatically enhance the resistance in certain series of materials. This remarkable antidoping effect has been leveraged to realize synaptic memory trees in nanoscale hydrogenated perovskite nickelates, opening a new direction for neuromorphic computing. To understand these phenomena, we formulate a physical phase-field model of the antidoping effect based on its microscopic mechanism and simulate the voltage-driven resistance change in the prototypical system of hydrogenated perovskite nickelates. Remarkably, the simulations using this model, containing only one adjustable parameter whose magnitude is justified by first-principles calculations, quantitatively reproduce the experimentally observed treelike resistance states, which are shown unambiguously to arise from proton redistribution-induced local band gap enhancement and carrier blockage. Our work lays the foundation for modeling the antidoping phenomenon in strongly correlated materials at the mesoscale, which can provide guidance to the design of novel antidoping-physics-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.