Abstract

The phase field (PF) approach to fracture has emerged as a promising modeling tool that regularizes the variational fracture theory by Griffith via the introduction of a nonlocal damage-like field variable in the corresponding formulation. In this work, we outline a PF formulation for triggering brittle fracture phenomena in shell structures made of Functionally Graded Materials (FGMs). This model relies on the 6-parameter shell formulation complying with a solid shell kinematic description and incorporates the use of the Enhanced Assumed Strain (EAS) and Assumed Natural Strain (ANS) methods in order to alleviate different locking pathologies. The corresponding multi-field variational formalisms is consistently derived and discretized within the context of the Finite Element Method (FEM). Details regarding the implementation in the general purpose FE packages are outlined. The applicability of this model is demonstrated by means of several numerical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.