Abstract

A phase-field model is described for predicting the diffusional phase transformation process in elastically inhomogeneous polycrystals. The elastic interactions are incorporated by solving the mechanical equilibrium equation using the Fourier-spectral iterative-perturbation scheme taking into account elastic modulus inhomogeneity. A number of examples are presented, including grain boundary segregation, precipitation of second-phase particles in a polycrystal, and interaction between segregation at a grain boundary and coherent precipitates inside grains. It is shown that the local pressure distribution due to coherent precipitates leads to highly inhomogeneous solute distribution along grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.