Abstract

A model for corrosion-induced cracking of reinforced concrete subjected to non-uniform chloride-induced corrosion is presented. The gradual corrosion initiation of the steel surface is investigated by simulating chloride transport considering binding. The transport of iron from the steel surface, its subsequent precipitation into rust, and the associated precipitation-induced pressure are explicitly modelled. Model results, obtained through finite element simulations, agree very well with experimental data, showing significantly improved accuracy over uniform corrosion modelling. The results obtained from case studies reveal that crack-facilitated transport of chlorides cannot be neglected, that the size of the anodic region must be considered, and that precipitate accumulation in pores can take years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call