Abstract

We obtain a cohesive fracture model as Γ-limit, as ε→0, of scalar damage models in which the elastic coefficient is computed from the damage variable v through a function fε of the form fε(v)=min⁡{1,ε12f(v)}, with f diverging for v close to the value describing undamaged material. The resulting fracture energy can be determined by solving a one-dimensional vectorial optimal profile problem. It is linear in the opening s at small values of s and has a finite limit as s→∞. If in addition the function f is allowed to depend on the parameter ε, for specific choices we recover in the limit Dugdale's and Griffith's fracture models, and models with surface energy density having a power-law growth at small openings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.