Abstract
Yttrium aluminium garnet (YAG) powders were synthesized by a citrate–nitrate gel combustion process. Thermogravimetry (TG), differential thermal analysis (DTA), X-ray powder diffraction (XRD), and time-resolved X-ray powder diffraction experiments were used to study the phase evolution. Formation of the pure YAG phase depends on the level of precursor decomposition in the combustion process. Removal of undecomposed citric acid from the starting precursor powder helps to lower the temperature at which the YAG phase begins to form and the temperature at which the pure, highly crystalline YAG phase is obtained. The value of citrate to nitrate ratio in the precursor gel affects the phase evolution for YAG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.