Abstract

The current research aims to enhance the tribological performance of maraging steels at high temperatures by surface modification techniques. CoCrNiTiMox (x; molar fraction, x = 0.5, 1.5) high-entropy alloy (HEA) coatings with dense lamellar microstructures were deposited onto maraging steels using high-velocity oxy-fuel spray (HVOF). In order to achieve a uniform distribution of constituent elements for thermal spray deposition, mechanical alloying was employed to synthesize the HEA feedstock. The phases and microstructure of the synthesized HEA powder, as-sprayed coatings, and worn surfaces were examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The as-sprayed HEA coatings exhibited metastability, with a BCC phase solid solution, NiTiO3 spinel, and an intermetallic MoNi phase for CoCrNiTiMo0.5 and Co2Mo3 phase for CoCrNiTiMo1.5. The average microhardness of CoCrNiTiMo0.5 and CoCrNiTiMo1.5 HEA coatings were 841 ± 62 HV0.3 and 952 ± 23 HV0.3, respectively. The specific wear rate and friction coefficients of CoCrNiTiMox HEA coatings exhibited a decreasing trend with an increase in temperature, owing to the formation of tribofilms on the worn surface. X-ray diffraction studies revealed the formation of NiMoO4 spinel for CoCrNiTiMo0.5 and MoO2, Co3O4 phases for CoCrNiTiMo1.5 HEA at a wear temperature of 600 °C. The investigation of worn surfaces showed a transformation in wear mechanisms from abrasive wear at room temperature to oxidative wear with mild fatigue at elevated temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.