Abstract

Abstract Recent years have witnessed considerable work on the development of lead-free piezoelectric ceramic materials and their structure–property correlations. The development of piezo response is a strong function of phase evolution in these materials. In this work, we report the effect of Ru doping and consequent phase evolution on the maximization of piezoelectric response of polycrystalline lead-free barium titanate, depicted as Ba(RuxTi1-x)O3 (BRT). The samples were prepared in a narrow compositional range of 0 ≤ x ≤ 0.03 using the conventional solid-state reaction method. Ru doping increases the leakage current of BaTiO3 samples attributed to increased oxygen vacancy concentration due to substitution of Ti4+ by Ru3+. Detailed structural analysis reveals that samples exhibiting coexistence of tetragonal (space group: P4mm) and orthorhombic (space group: Amm2) structured phases near room temperature reveal relatively enhanced piezoelectric properties. The BRT sample with Ru content of 2 mol% yields a maximum longitudinal piezoelectric coefficient, d33 of ∼269 pC/N, a high strain value of 0.16% with a large remnant polarization of ∼19 µC/cm2 and a coercive field of 5.8 kV/cm. We propose that the ‘4d’ orbital of Ruthenium plays a crucial role in improving the functional properties and in decreasing the ferroelectric Curie temperature. Our work provides clues into tailoring the phase evolution for designing lead-free piezoelectric materials with enhanced piezoelectric properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.