Abstract

The nonlinear intensity response of a digital fringe projection profilometry (FPP) system causes the captured fringe patterns to be nonsinusoidal waveforms and leads to an additional phase measurement error for commonly used three- and four-step phase-shifting algorithms. We perform theoretical analysis of the phase error owing to the nonsinusoidal waveforms. Based on the derived theoretical model, a novel and simple iterative phase compensation algorithm is proposed to compensate the nonsinusoidal phase error. Experiments show that the proposed algorithm can be used for effective phase error compensation in practical phase-shifting FPP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.