Abstract

The study of the solid–liquid phase equilibrium for the AlCl3–CaCl2–H2O system is of significance to separate aluminum chloride hexahydrate from the leachate obtained by the reaction of Ca-rich fly ash and a waste hydrochloride from chemical plant. The phase equilibrium data for the binary AlCl3–H2O system and the ternary AlCl3–CaCl2–H2O system over the temperature range from 278.15 K to 363.15 K were measured. A rigorous and thermodynamically consistent model representing the AlCl3–CaCl2–H2O system developed on the basis of the Pitzer’s activity coefficient model embedded in the Aspen Plus. On the basis of this, the phase behavior of the ternary AlCl3–CaCl2–H2O system at different temperatures was visualized with lucidity on an equilateral triangle. The phase-equilibrium diagram generated by modeling was illustrated to identify the course of crystallization to recover AlCl3·6H2O from the solutions containing calcium chloride. All of these will provide a thermodynamic basis for the separation of aluminum ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.