Abstract

Zn addition to the magnesium alloys could result in the age-hardening, and the age- hardening response of Mg-Zn alloys could be further enhanced by the ternary addition of Ca. In order to better understand the mechanism of the Mg-Zn-Ca base alloy design, the solubility of Mg-based solid solution and relative phase equilibrium at 400 in low-Ca side of the Mg-Zn-Ca system have been investigated by SEM, EPMA, XRD and DSC. It has been shown that T1 and T2 are still main ternary compounds in the Mg-rich corner at 400 with the addition of Ca to Mg-Zn system, but only T1 phase could be in equilibrium with the Mg-based solid solution, and the two-phase field of α-Mg+T1 becomes narrow. The liquid phase with the Ca content less than 8.4% (atomic fraction) exists in the low-Ca side at 400 , which could be in equilibrium with α-Mg. But liquid phase could not exist in the Mg-Zn-Ca alloys when the Zn/Ca ratio is less than 1.7. At 400 , there are four three- phase fields consisting of α-Mg+Mg2Ca+T1, α-Mg+T1+Liq, Liq+T1+T2 and Liq+T2+Mg2Zn3 in the Mg-Zn-Ca system, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.