Abstract

Methods of linear algebra were used to find a basis of independent chemical reactions in the topochemical conversion of silicon into silicon carbide by the reaction with carbon monoxide. The pressure–flow phase diagram was calculated from this basis, describing the composition of the solid phase for a particular design of vacuum furnace. It was demonstrated that to grow pure silicon carbide, it is necessary to ensure the pressure of carbon monoxide less than a certain value and its flow more than a certain value, depending on the temperature of the process. The elastic fields around vacancies formed were considered for the first time in calculating the topochemical reaction. It was shown that the anisotropy of these fields in a cubic crystal increases the constant of the main reaction approximately fourfold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.