Abstract

Isothermal vapour–liquid equilibrium data have been measured for the ternary system (di-isopropyl ether + isobutanol + benzene) and two of the binary systems involved (di-isopropyl ether + isobutanol) and (isobutanol + benzene) at 313.15 K. A static technique consisting of an isothermal total pressure cell was used for the measurements. Data reduction by Barker's method provides correlations for G E using the Margules equation for the binary systems and the Wohl expansion for the ternary system. Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.