Abstract

Thermodynamic properties of hydrogen fluoride are strongly affected by the tendency of its molecules to form oligomers through hydrogen bonding in both the vapor and liquid phases. The associated perturbed anisotropic chain theory (APACT) is applied to correlate the vapor pressure and the saturated liquid and saturated vapor densities of pure hydrogen fluoride from the triple point up to the critical point with very good accuracy. An equilibrium model is used to account for hydrogen bonding that assumes the formation of dimer, trimer, hexamer, and nonamer species. The model is used to predict the phase behavior of binary hydrogen fluoride mixtures with CFCs and HCl and accurately describes the azeotrope formation of these systems. Liquid-liquid equilibria are predicted for several hydrogen fluoride-fluorocarbon mixtures that have not been experimentally detected in the past

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.