Abstract

Solid–liquid phase transitions of vanillin, ethylvanillin, o-vanillin and o-ethylvanillin in compressed hydrocarbons (isobutane and propane), fluorinated hydrocarbons (R23, R134a and R236fa) and sulphur hexafluoride (SF 6) were determined with a modified capillary method in a pressure range between 0.1 and 31.0 MPa. Equilibrium solubilities of vanillins in compressed fluorinated hydrocarbons were determined at temperatures 313.2 and 333.2 K and over a pressure range between 1.1 and 26.0 MPa with a static–analytic method. Experimental solubility data were correlated by a density-based Chrastil model. Results showed that phase equilibria of vanillins in investigated compressed gases are influenced by the type of alchoxy group (methoxy or ethoxy) and the position of OH group (ortho or para), bound to the aromatic ring of solute, as well as the molecular structure of the gas. Three phase SLG curves in p, T-projections mainly exhibited temperature minimums and negative slopes d p/d T, with a maximum melting point depression between 9 and 21 K; all systems with SF 6 exhibited a continuous positive slope d p/d T of approximately 4.5 MPa/K. SLG curves with a temperature maximum at low pressure were observed for systems of o-vanillins with R23. Solubilities of o-vanillins in R23 and R236fa were higher in comparison with p-vanillins, whereas, in the case of R134a, the solubilities were influenced by the alchoxy group bound on aromatic ring: vanillin and o-vanillin with methoxy group are more soluble than vanillins with ethoxy group (ethylvanillin and o-ethylvanillin). The highest solubility of all four vanillins was observed in R236fa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.