Abstract

Stability of metastable phase states against infinitesimal perturbations in a simple one-component system is considered. The method of molecular dynamics simulation was used to determine the boundaries of essential instability of supersaturated vapor, a superheated liquid, and a superheated crystal. The absence of a spinodal from a supercooled liquid and the dependence of the boundary of essential instability of a superheated crystal on the character of deformation were established. It is shown that each of the three lines of phase equilibria in a one-component system has an endpoint of termination of phase coexistence. As distinct from the liquid–gas critical point, which is the point of phase identity and is located in the region of stable states, the endpoints of melting and sublimation lines are located in the region ofmetastable states. At these points, a critical (spinodal) state is achieved only for one of the coexisting phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call