Abstract

Directly electrochemical conversion of nitrate (NO3-) is an efficient and environmentally friendly technology for ammonia (NH3) production but is challenged by highly selective electrocatalysts. High-entropy alloys (HEAs) with unique properties are attractive materials in catalysis, particularly for multi-step reactions. Herein, we first reported the application of HEA (FeCoNiAlTi) for electrocatalytic NO3- reduction to NH3 (NRA). The bulk HEA is active for NRA but limited by the unsatisfied NH3 yield of 0.36 mg h-1 cm-2 and Faradaic efficiency (FE) of 82.66%. Through an effective phase engineering strategy, uniform intermetallic nanoparticles are introduced on the bulk HEA to increase electrochemical active surface area and charge transfer efficiency.The resulting nanostructured HEA (n-HEA) delivers enhanced electrochemical NRA performance in terms of NH3 yield (0.52 mg h-1 cm-2) and FE (95.23%). Further experimental and theoretical investigations reveal that the multi-active sites (Fe, Co, and Ni) dominated electrocatalysis for NRA over the n-HEA. Notably, the typical Co sites exhibit the lowest energy barrier for NRA with *NO + H+ + e- → *NOH as the rate-determining step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call