Abstract

Two-dimensional materials that are intrinsically ferromagnetic are crucial for the development of compact spintronic devices. However, most non-layered 2D magnets with a strong ferromagnetic order are difficult to synthesize. Here we show that the flakes of trigonal and monoclinic Cr5Te8 can be grown via a chemical vapour deposition method. Using magneto-optical and magnetotransport measurements, we show that both phases exhibit robust ferromagnetism with strong perpendicular anisotropy at thicknesses of a few nanometres. A high Curie temperature of up to 200 K can be obtained by manipulating the phase structure and thickness. We also observe a colossal anomalous Hall effect in the more structurally distorted monoclinic Cr5Te8, with an anomalous Hall conductivity of 650 Ω−1 cm−1 and anomalous Hall angle of 5%. Few-nanometre-thick flakes of trigonal and monoclinic Cr5Te8 can be grown using chemical vapour deposition, with the monoclinic phase exhibiting an anomalous Hall conductivity of 650 Ω–1 cm–1 and anomalous Hall angle of 5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.