Abstract
Natural language processing unfolds information overtime as spatially separated, multimodal, and interconnected neural processes. Existing noninvasive subtraction-based neuroimaging techniques cannot simultaneously achieve the spatial and temporal resolutions required to visualize ongoing information flows across the whole brain. Here we have developed rapid phase-encoded designs to fully exploit the temporal information latent in functional magnetic resonance imaging data, as well as overcoming scanner noise and head-motion challenges during overt language tasks. We captured real-time information flows as coherent hemodynamic waves traveling over the cortical surface during listening, reading aloud, reciting, and oral cross-language interpreting tasks. We were able to observe the timing, location, direction, and surge of traveling waves in all language tasks, which were visualized as "brainstorms" on brain "weather" maps. The paths of hemodynamic traveling waves provide direct evidence for dual-stream models of the visual and auditory systems as well as logistics models for crossmodal and cross-language processing. Specifically, we have tracked down the step-by-step processing of written or spoken sentences first being received and processed by the visual or auditory streams, carried across language and domain-general cognitive regions, and finally delivered as overt speeches monitored through the auditory cortex, which gives a complete picture of information flows across the brain during natural language functioning. PRACTITIONER POINTS: Phase-encoded fMRI enables simultaneous imaging of high spatial and temporal resolution, capturing continuous spatiotemporal dynamics of the entire brain during real-time overt natural language tasks. Spatiotemporal traveling wave patterns provide direct evidence for constructing comprehensive and explicit models of human information processing. This study unlocks the potential of applying rapid phase-encoded fMRI to indirectly track the underlying neural information flows of sequential sensory, motor, and high-order cognitive processes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.