Abstract

Chiral metasurfaces have many applications in the terahertz (THz) band, but they still lack modulation flexibility and functionality expansion. This paper presents a terahertz chiral metasurface with switchable phase distribution and switchable circular dichroism (CD). The metasurface unit consists of a metallic inner ring embedded in vanadium oxide and a vanadium oxide outer ring, state switching by thermal control of vanadium oxide and a change in the frequency of the incident wave. Based on the switchable phase distribution, we designed a focusing vortex beam generator with adjustable focal lengths through simulation. Based on the switching CD capability, we simulate its mode switching in near-field imaging using numerical simulation, and innovatively propose an optical encryption method. Utilizing the chiral property, we also designed dual-channel switchable holographic imaging in the same frequency band, which combined with the state change of VO2 can realize a total of 4 holograms switching. Our proposed metasurface is expected to provide new ideas for the study of optical encryption and wavefront modulation of dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call