Abstract

X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy (XAES) supported with the lineshape analysis by the pattern recognition (PR) method and the fuzzy k-nearest neighbor rule (kNN FR) were applied to study semiinsulating polycrystalline silicon layers (SIPOS). The aim of the present work was to obtain the qualitative and quantitative information about the surface region of as-received SIPOS layers. For the purpose of qualitative analysis the binding energies (BE), binding energy shifts (ΔBE), the half widths (FWHM) and the lineshapes of the Si 2p, O 1s and O KLL lines were analysed. The quantitative analysis was performed on the basis of the XPS using sensitivity factor method, multiline (ML) approach and the kNN FR. The performance of the kNN rule is possible after selecting the proper set of reference standard materials to which the rule refers during identification of an ambiguous chemical state. By selecting the reference samples supplying the information about the chemical state of Si, SiOx and SiO2, the kNN rule allowed to distinguish qualitatively these three different phases in SIPOS samples. The particular application of the kNN FR makes possible the quantitative analysis by referring the fuzzy probability of classification for the given chemical state to the concentration of particular constituents in the investigated SIPOS. All the methods applied are consistent in revealing the quantitative results and show that SIPOS is a deeply non-homogeneous material, consisting of two phases: silicon and silicon oxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.