Abstract

FeyTe1−xSex, an archetypical iron-based high-temperature superconductor with a simple structure but rich physical properties, has attracted lots of attention because the two end compositions, Se content x = 0 and 1, exhibit antiferromagnetism and nematicity, respectively, making it an ideal candidate for studying their interactions with superconductivity. However, what is clearly lacking to date is a complete phase diagram of FeyTe1−xSex as functions of its chemical compositions since phase separation usually occurs from x ∼ 0.6 to 0.9 in bulk crystals. Moreover, fine control of its composition is experimentally challenging because both Te and Se are volatile elements. Here we establish a complete phase diagram of FeyTe1−xSex, achieved by high-throughput film synthesis and characterization techniques. An advanced combinatorial synthesis process enables us to fabricate an epitaxial composition-spread FeyTe1−xSex film encompassing the entire Se content x from 0 to 1 on a single piece of CaF2 substrate. The micro-region composition analysis and X-ray diffraction show a successful continuous tuning of chemical compositions and lattice parameters, respectively. The micro-scale pattern technique allows the mapping of electrical transport properties as a function of relative Se content with an unprecedented resolution of 0.0074. Combining with the spin patterns in literature, we build a detailed phase diagram that can unify the electronic and magnetic properties of FeyTe1−xSex. Our composition-spread FeyTe1−xSex films, overcoming the challenges of phase separation and precise control of chemical compositions, provide an ideal platform for studying the relationship between superconductivity and magnetism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.