Abstract
Polymer‐dispersed liquid crystals (PDLCs) have garnered significant interest and motivated the investigation of the phase behavior of thermally stable smectic liquid crystals (LCs) via thermally induced phase separation (TIPS). In this study, we examined a series of two, biphenyl‐based smectic LCs suitable for high temperature polymer blend processing. Phase diagrams for LC/polystyrene (PS) blends at various compositions (0–60 wt%) were constructed. Less than 15 wt% of 8B8 (1,1′‐biphenyl‐4,4′‐diyl dioctanoate) LC in PS led to good polymer miscibility, while phase separation was induced at concentrations higher than 15 wt%. The LC concentration at saturation decreased with increasing aliphatic chain length. We also investigated the chain length (C6‐C16) effect on the PS glass transition temperature (Tg) at the LC saturation point. The Tg increased with increasing chain length due to reduced plasticization. We further examined the role of chemical structure (relatively less polar ether vs. more polar ester) on the phase diagram regions and the Tg of the nonpolar PS matrix, respectively. It is anticipated that these LC/PS phase diagrams will benefit elevated temperature processing for TIPS by highlighting the role of LC chemical structure and chain length on blend morphology. POLYM. ENG. SCI., 56:388–393, 2016. © 2016 Society of Plastics Engineers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.