Abstract

Salbutamol is a drug used to treat the pulmonary diseases by ameliorate the medium and large airways in the lungs. Partitioning of salbutamol drug on the aqueous two-phase systems (ATPSs) of PEG1000,1500,2000,4000,6000 + trilithium citrate + water was determined at T = 298.15 K. The effect of molecular mass of polymer (MMP) on the binodal and tie-line compositions were studied. Results showed that the biphasic area was extended as the MMP was increased. The salting-out ability were quantified using the Setschenow model, and the binodal curves were modeled by a nonlinear 3-parameter equation. Furthermore, electrolyte Wilson along with the osmotic virial models have adequately been implemented to fit the tie-line compositions. Also, the studied ATPSs were implemented to study the partitioning of salbutamol drug on the salt-affluent and polymer-affluent phases. It is observed that, ATPSs of PEG1000 is premium to extract the salbutamol to the polymer-affluent phase, where, the ATPSs of PEG6000 is more favorable to extract the drug to the salt-affluent phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call