Abstract

An integral equation approach is developed to investigate phase coexistence properties of Ising spin fluids with Yukawa ferromagnetic and Lennard-Jones nonmagnetic interactions in the presence of an external field. The calculations are carried out on the basis of the Duh and Henderson closure with a specific Duh-like partitioning of the total potential. The coupled set of the Ornstein-Zernike equation, the closure relation and the external field constraint are solved using an efficient numerical algorithm. The phase diagrams are evaluated in a wide range of varying the external field and the ratio of strengths of Yukawa to Lennard-Jones interactions. Different types of the phase diagram topology as well as various external field dependencies of critical temperatures and densities are identified. The complexity with respect to simple Lennard-Jones fluids is explained by coupling between spatial and spin degrees of freedom in the system. A comparison of the obtained theoretical results with simulation data is made and a good agreement is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call